1,233 research outputs found

    A guide to integrating immunohistochemistry and chemical imaging

    Full text link
    © 2018 The Royal Society of Chemistry. Chemical imaging provides new insight into the fundamental atomic, molecular, and biochemical composition of tissue and how they are interrelated in normal physiology. Visualising and quantifying products of pathogenic reactions long before structural changes become apparent also adds a new dimension to understanding disease pathogenesis. While chemical imaging in isolation is somewhat limited by the nature of information it can provide (e.g. peptides, metals, lipids, or functional groups), integrating immunohistochemistry allows simultaneous, targeted imaging of biomolecules while also mapping tissue composition. Together, this approach can provide invaluable information on the inner workings of the cell and the molecular basis of diseases

    Detection of gunshot residues using mass spectrometry

    Full text link
    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the "gold standard" for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis. © 2014 Regina Verena Taudte et al

    Quantitative immuno-mass spectrometry imaging of skeletal muscle dystrophin

    Full text link
    Emerging and promising therapeutic interventions for Duchenne muscular dystrophy (DMD) are confounded by the challenges of quantifying dystrophin. Current approaches have poor precision, require large amounts of tissue, and are difficult to standardize. This paper presents an immuno-mass spectrometry imaging method using gadolinium (Gd)-labeled anti-dystrophin antibodies and laser ablation-inductively coupled plasma-mass spectrometry to simultaneously quantify and localize dystrophin in muscle sections. Gd is quantified as a proxy for the relative expression of dystrophin and was validated in murine and human skeletal muscle sections following k-means clustering segmentation, before application to DMD patients with different gene mutations where dystrophin expression was measured up to 100 µg kg−1 Gd. These results demonstrate that immuno-mass spectrometry imaging is a viable approach for pre-clinical to clinical research in DMD. It rapidly quantified relative dystrophin in single tissue sections, efficiently used valuable patient resources, and may provide information on drug efficacy for clinical translation

    Stabilization of nontoxic Ajβ-oligomers: Insights into the mechanism of action of hydroxyquinolines in alzheimer’s disease

    Get PDF
    ©2015 the authors. The extracellular accumulation of amyloid β (A/β) peptides is characteristic of Alzheimer's disease (AD). However, formation of diffusible, oligomeric forms of Aβ, both on and off pathways to amyloid fibrils, is thought to include neurotoxic species responsible for synaptic loss and neurodegeneration, rather than polymeric amyloid aggregates. The 8-hydroxyquinolines (8-HQ) clioquinol (CQ) and PBT2 were developed for their ability to inhibit metal-mediated generation of reactive oxygen species from A/β:Cu complexes and have both undergone preclinical and Phase II clinical development for the treatment of AD. Their respective modes of action are not fully understood and may include both inhibition of Aβ fibrillar polymerization and direct depolymerization of existing Aβ fibrils. In the present study, we find that CQ and PBT2 can interact directly with Aβ and affect its propensity to aggregate. Using a combination of biophysical techniques, we demonstrate that, in the presence of these 8-HQs and in the absence of metal ions, Aβ associates with two 8-HQ molecules and forms a dimer. Furthermore, 8-HQ bind Aβ with an affinity of 1-10 μam and suppress the formation of large (>30kDa) oligomers. The stabilized low molecular weight species are nontoxic. Treatment with 8-HQs also reduces the levels of in vivo soluble oligomers in a Caenorhabditis elegans model of Aβ toxicity. We propose that 8-HQs possess an additional mechanism of action that neutralizes neurotoxic Aβ oligomer formation through stabilization of small (dimeric) nontoxic Aβ conformers

    First observation of the KS->pi0 gamma gamma decay

    Get PDF
    Using the NA48 detector at the CERN SPS, 31 KS->pi0 gamma gamma candidates with an estimated background of 13.7 +- 3.2 events have been observed. This first observation leads to a branching ratio of BR(KS->pi0 gamma gamma) = (4.9 +- 1.6(stat) +- 0.9(syst)) x 10^-8 in agreement with Chiral Perturbation theory predictions.Comment: 10 pages, 4 figures submitted to Phys. Lett.

    Search for CP violation in K0 -> 3 pi0 decays

    Get PDF
    Using data taken during the year 2000 with the NA48 detector at the CERN SPS, a search for the CP violating decay K_S -> 3 pi0 has been performed. From a fit to the lifetime distribution of about 4.9 million reconstructed K0/K0bar -> 3 pi0 decays, the CP violating amplitude eta_000 = A(K_S -> 3 pi0)/A(K_L -> 3 pi0) has been found to be Re(eta_000) = -0.002 +- 0.011 +- 0.015 and Im(eta_000) = -0.003 +- 0.013 +- 0.017. This corresponds to an upper limit on the branching fraction of Br(K_S -> 3 pi0) < 7.4 x 10^-7 at 90% confidence level. The result is used to improve knowledge of Re(epsilon) and the CPT violating quantity Im(delta) via the Bell-Steinberger relation.Comment: 18 pages, 7 figures, submitted to Phys. Lett.

    A precision measurement of direct CP violation in the decay of neutral kaons into two pions

    Get PDF
    The direct CP violation parameter Re(epsilon'/epsilon) has been measured from the decay rates of neutral kaons into two pions using the NA48 detector at the CERN SPS. The 2001 running period was devoted to collecting additional data under varied conditions compared to earlier years (1997-99). The new data yield the result: Re(epsilon'/epsilon) = (13.7 +/- 3.1) times 10^{-4}. Combining this result with that published from the 1997, 98 and 99 data, an overall value of Re(epsilon'/epsilon) = (14.7 +/- 2.2) times 10^{-4} is obtained from the NA48 experiment.Comment: 19 pages, 5 figures, to be published in Physics Letters

    Toward Optimized High-Relaxivity MRI Agents: The Effect of Ligand Basicity on the Thermodynamic Stability of Hexadentate Hydroxypyridonate/Catecholate Gadolinium(III) Complexes

    Get PDF
    The thermodynamic stabilities of the Gd III complexes of five hexadentate ligands, which incorporate the 2,3-dihydroxyterephthalamide and 2,3-hydroxypyridonate chelating moieties, have been determined by potentiometric and spectrophotometric titration. The ligands were chosen to span a range of basicities while maintaining a similar tripodal structural motif, facilitating a study of the effect of ligand basicity on the thermodynamic stability of the Gd III complexes. The relative stability of the five complexes is found to be highly pH dependent, with the most acidic ligands forming the most stable complexes at low pH and more basic ligands forming more stable complexes at high pH. The most stable Gd III complex at a physiological pH of 7.4 is formed with a ligand of intermediate basicity and is of stability comparable to that of Gd III complexes that feature eight-coordinate amino−carboxylate ligands and are currently used as magnetic resonance imaging contrast agents in diagnostic medicine. A single-crystal X-ray structure of the intermediate compound 3-hydroxy-6-methyl-2-oxo-1,2-dihydropyridine-4-carboxylic acid ethyl ester is described: This compound crystallizes in the triclinic space group P1 h with a ) 7.4801(3) Å, b ) 8.0671(3) Å, c ) 8.3457(4) Å, R ) 72.242(2)°, ) 80.693(2)°, γ ) 69.943(3)°, V ) 449.60(3) Å 3 , Z ) 2, and R ) 0.042
    corecore